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ABSTRACT

Shop search has become an increasingly important service pro-
vided by Taobao, the China’s largest e-commerce platform. By us-
ing shop search, a user can easily identify the desired shop that pro-
vides a full-scale of relevant items matching his information need.
With the tremendous growth of users and shops, shop search faces
several unique challenging problems: 1) many shop names do not
fully express what they sell, i.e., the semantic gap between user
query and shop name; 2) due to the lack of user interactions, it is
difficult to deliver a good search result for the long-tail queries and
retrieve long-tail shops that are highly relevant to a query.

To address these two key challenges, we resort to graph neural
networks (GNNs) which have various successful applications in ar-
bitrarily structured graph data. Specifically, we propose a dual het-
erogeneous graph attention network (DHGAT) integrated with the
two-tower architecture, using the user interaction data from both
shop search and product search. At first, we build a heterogeneous
graph in the context of shop search, by exploiting both the first-
order and second-order proximity from user search behaviors, user
click-through behaviors and user purchase records. Then, DHGAT
is devised to attentively adopt heterogeneous and homogeneous
neighbors of query and shop to enhance representations of them-
selves, which can help relieve the long-tail phenomenon. Besides,
DHGAT enriches semantics of query text and shop name by com-
positing the titles of the relevant items to alleviate the semantic
gap. Moreover, to enhance the graph representation learning, we
augment DHGAT with a regularized neighbor proximity loss (NPL)
to explicitly learn the graph topological structure and train whole
framework in an end-to-end fashion. Compelling results from both
offline evaluation and online A/B tests demonstrate the superiority
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of DHGAT over state-of-the-art methods, especially for long-tail
queries and shops.
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1 INTRODUCTION

Search engine is the key functionality in driving rapid growth of
e-commerce platforms, such as Taobao! and Amazon?. Due to the
large volume of users and items, it is challenging to deliver satis-
fied results that meet information needs of customers. Therefore,
great efforts have been made to enhance the performance of e-
commerce search engine, which plays a significant role in improv-
ing user experience and promoting the sales revenue of online mer-
chants. Specifically, a shop in an e-commerce platform often sells
items relevant to a specific category, e.g., a shop sells all kinds of
sportswear. Also, the promotion campaign is often launched in a
shop-wide manner, where a larger discount could be offered with
a bigger order. Hence, it becomes more convenient for a user to
purchase relevant items in a single shop and enjoy an overlaid
promotion. Nowadays, shop search has become an important ser-
vice for Taobao platform. To our knowledge, no previous effort has
been made towards improving the performance of shop search in
e-commerce.

Shop search, however, confronts several distinct challenges. Firstly,
the user queries and shop names are often very short in nature.
There exists semantic gap between user queries and shop names.

!http://tacbao.com/
Zhttps://www.amazon.com/
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That is, regularly user queries are more casual while sellers de-
scribe their shops more formally. And sometimes a shop name can
not reflect what they sell or serve completely, which causes more
difficulties to conform user’s intent. So simple lexical matching
very likely falls short in these cases. Besides, unlike product search,
user’s shop search behavior and the feedback signals (clicks or pur-
chases) are quite sparser. Note that a user can directly search for in-
terested items rather than shops. Also, they can access the desired
shops through previous orders or favorites collection. It is widely
known that most of the exposures are popular shops or queries of
high frequency. For the long-tail queries and shops, we usually do
not have adequate feedback data to train a ranking model, leading
to the long-tail bias. These hot shops could domainte the search
results and hence degrade the user experience. Moroever, when a
long-tail query is issued, it could be difficult to generate a good
ranking result.

It has been shown that modelling the e-commerce interactions
as structured graph attains significant results. [25] generates node
sequence through random walk and the Skip-Gram model [20] is
used to train graph embeddings. Then the learned vertice represen-
tations are further injected into click through rate (CTR) prediction
task. [29] leverages DeepWalk [21] and Node2vec [11] embedding
techniques to integrate click-graph features into a unified neural
ranking framework also in a two-stage manner. These two-stage
approaches are not directly designed for search optimization tar-
gets (e.g. CTR, CVR), since the graph based representation learn-
ing works as a separate component. This pipelined optimization
scheme leads to inferior expressive ability for e-commerce search
scenes.

Recently, Graph Neural Networks (GNNs) have achieved mag-
nificent success in various natural language processing and infor-
mation retrieval tasks [26, 29, 30]. The aim of GNNs is to gener-
alize neural network algorithms to non-Euclidean domains (such
as graphs) for robust feature learning. GNNs mainly derive the
node representation by aggregating the features appearing in the
neighborhood. That is, the underlying graph structure determines
how much information can be assimilated in order to facilitate the
representation of node itself. Several works have utilized GNNs
to deliver promising performance for ranking and recommenda-
tion applications [3, 25, 28]. It is expected that modeling homo-
geneous and heterogeneous relations on the basis of various user
interactions and rich semantic information in e-commerce would
provide a promising avenue to enhance long-tail performance of
shop search.

To this end, in this paper, we propose a heterogeneous graph
neural network for shop search in e-commerce. Specifically, we
develop a dual heterogeneous graph attention network to boost
the representation learning of queries and shops, named DHGAT.
The main goal of DHGAT is to enrich the represenations of queries
and shops by exploiting various kinds of semantic signals in the e-
commerce platform. Here, we build a heterogeneous graph in the
context of shop search by exploiting the first-order and second-
order proximity from three kinds of user interactions: user search
behaviors, user click-through bahaviors and user purchase records.
Both the homogeneous and heterogeneous relations included in
the graph can help us derive robust graph-based representations
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for queries and shops. By introducing a hierarchical attention mech-
anism, DHGAT can selectively identify the relevant homogeneous
and heterogeneous neighbors to update the representation for self
node. To further bridging the semantic gap incurred by the mis-
match between queries and shops, DHGAT exploits the semantic
textual information provided by the relevant items to derive text-
level representations for queries and shops. At last, both graph-
based representations and text-level representations along with
multiple user features are composited and fed into a two-tower net-
work for relevance estimation. For model training, we introduce
a regularized neighbor proximity loss as an auxiliary task to en-
hance the representation learning to retain the graph topological
structure, leading to better search performance.

The main contributions of our work can be summarized as fol-
lows:

(1) We propose a dual hierarchical graph attention network for
e-commerce shop search task. A heterogeneous graph is constructed
to perform graph based representation learning for both shops and
queries, which includes both first-order and second-order proxim-
ity from various user interactions in e-commerce. To the best of
our knowledge, this is the first attempt to address the task of shop
search in e-commerce.

(2) The proposed DHGAT selectively leverages heterogeneous
and homogeneous relations of queries and shops simultaneously
to derive the robust semantic representations for shop search, es-
pecially for long-tail performance enhancement. The textual infor-
mation provided by the relevant items is also exploited to further
alleviate the semantic gap.

(3) To explicitly learn the topological structure within graph, we
add a regularized neighbor proximity loss to main CTR prediction
loss. The whole framework is trained in an end-to-end fashion. Of-
fline evaluation and online A/B test results prove the effectiveness
and efficiency of our proposed model.

2 PRELIMINARIES

In this section, we first introduce the problem setup and describe
heterogeneous graph. Then we give a detailed description towards
the graph construction in context of shop search in e-commerce.

2.1 Problem Setup

Shop Search In E-commerce. Given a set < U, Q, S >, where
U = {u1,u2, ..., um } denotes the set of musers, Q = {q1,42, ---»qn}
denotes the set of n queries, S = {s1,s2, ...,sp} denotes the set of
p shops. When a user u issues a query g, the shop search engine is
required to retrieve the most relevant shops as a ranking list where
the more relevant shops are ranked higher (i.e., with a higher rele-
vance score).

In context of shop search in e-commerce, there are various kinds
of entities (i.e., users, items, shops and queries) and interactions be-
tween them. It is natural to model this complex system as a hetero-
geneous graph, where user, query, shop, item are taken as different
types of nodes, and the edges between them reflect the relatedness
in terms of the associated interactions.

Heterogeneous Graph. A heterogeneous graph is defined as a
network G = (V, &) consisting of a node set V' and an edge set
&. Tt is also associated with a node type mapping function ¢(v) :
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YV — O and an edge type mapping function /(e) : & — R, where
O and R denote the set of all node types and the set of all edge
types respectively and |O| + |R| > 2. Here, an edge type indicates
the connection between two particular types of nodes.

As mentioned above, for shop search, we can build a heteroge-
neous graph to include all related types of entities as nodes. For in-
stance, a query node can have homogeneous query neighbors, het-
erogeneous shop and item neighbors. We plan to take advantage of
the information encoded in the heterogeneous graph to facilitate
the task of shop search and improve user experience. Given a het-
erogeneous graph G = (V, &), we devise a novel heterogeneous
graph representation learning framework to embed each node as
a dense vector representation: Fg : V — Rl(le‘i, where d is the
dimension size and d < |V|, and © denotes the learnable param-
eters. Then, for a given shop and query pair, the corresponding
representations are fed into a neural network for relevance estima-
tion.

2.2 Graph Construction

Since the efficacy of the graph representation learning highly re-
lies on the underlying graph structure, a key step is to construct
a heterogeneous graph that precisely holds the semantic related-
ness between different entities in context of shop search. Here, we
first collect different kinds of user interactions in the e-commerce
platform as the raw data for graph construction. These interactions
include user search behaviors, user click-through behaviors, user pur-
chase records. Specifically, there are three types of nodes in the
constructed graph: Shop (S), Query (Q) and Item (I). By exploiting
the first-order and second-order proximity from the raw interac-
tion data, we build three edge types for these three node types cor-
respondingly, which cover both homogeneous and heterogeneous
neighbors for each node.

Homogeneous Neighbors. The homogeneous neighbors refer to
the nodes of the same type. This kind of relations often reveal the
shared characteristics between the two nodes to some extent. For
example, two queries that share the same search intent, or two
shops that provide very similar items. For queries and shops, we
utilize the following rules of second-order proximity to establish
the homogeneous neighbors: 1) users mostly follow a changeless
purpose within a search session. Hence, the queries belonging to
same session constitute each other’s homogeneous neighbors; 2)
the queries that lead to the click of same shop often reveal over-
lap of user’s search intent. Hence, the queries matching this crite-
rion are formulated as each other’s homogeneous neighbors; 3) the
shops that are clicked under the same query are likely to function
similarly (e.g., provide the similar items). Hence, these shops are
considered as each other’s homogeneous neighbors.
Heterogeneous Neighbors. For heterogeneous neighbors, first
of all, we make use of click-through data for shop search directly.
That is, the shops clicked under a query become the query’s hetero-
geneous shop neighbors and vice versa. Note that this first-order
proximity offered by the shop search click-through data could be
very sparse since a large proportion of shops are not displayed.
The resultant heterogeneous relations could not fully cover the se-
mantic relatedness between shops and queries, leading to inferior
long-tail performance.
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Therefore, to enrich the heterogeneous query-shop relations ex-
tracted through the shop search click-through data, we propose to
transfer knowledge from product search, the main search engine
for most e-commerce platforms. Due to the large amount of prod-
uct search click-through data, we can leverage the second-order
query-shop relations to augment the corresponding first-order re-
lations. Specifically, for an item provided by a shop and purchased
under a query, the corresponding shop and query are considered
as each other’s heterogeneous neighbor respectively.

Note that exploiting the second-order query-shop relations from
the product search click-through data may not alleviate the data
sparsity problem to its fullness, because the long-tail phenomenon
still exists in the product search scenario. Moreover, the name of
a shop is very short due to the restriction made by the platform.
It is hard to express all the items sold in the shop by a short shop
name. It is expected to alleviate long-tail problem by encoding the
semantic information of the constituent items to bridge this seman-
tic gap. Hence, we propose to further exploit the textual semantics
covered by the item titles. For each query, we treat the items sold
under it as the former’s heterogeneous item neighbors. Similarly,
the items belonging to the same shop are considered as the shop’s
heterogeneous item neighbors. As will be discussed in the next sec-
tion, the proposed DHGAT exploits the item neighbors and their
associated titles to derive the text-level representations for queries
and shops.

After establishing the edges between nodes, we further assign
weight to each edge to indicate the relatedness between the two
nodes. For the edge between each shop and item pair, the edge
weight is set to be 1. For the other edge types, the edge weight is
simply set to be the number of corresponding user interactions. An
illustration for graph construction is shown in Figure 1(a), where
the homogeneous and heterogeneous neighbors derived from the
user interactions are shown as the bottom two after graph con-
struction, while the product search based item neighbors are shown
as the upper two.

3 METHOD

In this section, we formally present our proposed model DHGAT
to tackle the challenges mentioned in Section 1. For each part, we
start from the motivations and intuitions, and then introduce the
technical details. Next, we present objective function and some
training techniques that can enhance the model performance.

3.1 Overview

The framework architecture of DHGAT is illustrated in Figure 1(c).
The basic idea of the proposed model DHGAT is to design a het-
erogeneous GNN for enriching the representations of queries and
shops. As shown in Figure 1(b), our model takes a triple set <
u,q,s > as input, where u and g stands for user u issues a query g,
s represents a candidate shop. We samples by weight a fix-sized set
of neighbors for query and shop respectively, including homoge-
neous ones and heterogeneous ones. Different types of neighbors
are aggregated through a hierarchical attention layer to strengthen
ID embedding representations. Dual heterogeneous graph atten-
tion networks are operated for queries and shops at the same time.
Moreover, borrowing item transaction history from product search
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Figure 1: The whole pipeline of our model: (a) Graph Construction, (b) Two Tower Architecture, (c) Dual Heterogeneous Graph
Attention Network, (d) Transferring Knowledge from Product Search.

(Figure 1(d)), we clarify and enhance semantics of query text and
shop name by exploiting their heterogeneous item neighbors’ ti-
tle. Multiple user features are incorporated to yield personalized
search results. At last, user-query representations and shop repre-
sentations are sent into a tow-tower architecture to get predicted
score, according to which a sorted shop list will be displayed.

3.2 Dual Heterogeneous Graph Attention
Network

The key challenge of applying GNNs to shop search is how to com-
pose homogeneous and heterogeneous neighbors of queries and
shops. Firstly we denote query’s homogeneous neighbors as Ny(q),
query’s heterogeneous neighbors as N,(q), similarly Ny(s), Ne(s)
are represented as shop’s homogeneous neighbors and shop’s het-
erogeneous neighbors respectively. Since some hot queries and
shops may have tons of graph neighbors, we begin by sampling
2N neighbors for each query and shop, N homogeneous ones and
N heterogeneous ones. Sampling weights are calculated and nor-
malized as stated in Section 2.2.

After getting sampled neighbors for queries and shops, a natural
idea is to aggregate neighborhood information for reinforcing self
node representation. Take query node as an example:

)= AGGREGATE({h, 1, Vo € No(9) U Ne(9)})) (1)

t
hN(q

t t=1 1t
h{ = COMBINE(hg ™" hiy ) @)

where hfl is ID embedding of query node q at layer t, AGGREGATE
denotes neighbor aggregation function, such as averaging or max-
pooling operation, and COMBINE denotes the function that merges
the aggregated neighborhood representation with the node’s rep-
resentation.

However, we have both homogeneous query and heterogeneous
shop neighbors for query node, simply adopting one overall aggre-
gation may lose much information. We devise a hierarchical atten-
tive aggregation strategy to discriminate the influence of different
types of neighbors. Specifically, we resort to a two-level attention
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mechanism, where the first level focuses on aggregating neighbor
nodes within each type and the second level targets at aggregation
over different types. For query node g, the first level attention over
homogeneous query neighbors is formulated as:

Z aq lht 1

ieN,(q)
; is the normalized attention weight of homogeneous

No(q) )

where o

neighbor node i at layer ¢:

exp(LeakyReLU(aqT’t [hg—l ”hl;—l]))
ZkeN,(q) exp(LeakyReLU (aqT’ : [hg—l ”hlt(—l]))

where ag,; stands for each layer using its own attention parame-
ters, the operator || denotes concatenation, and we use LeakyReLU
as the activation function.

Likewise, for query node g, its heterogeneous shop neighbors
are combined at the first level attention. But as query embedding
and shop embedding don’t share the same vector space, we pro-
pose to add a heterogeneous neighbor transformation matrix (HNTM)
before the attention layer:

t
hi.g) =

t

ag; =

t t-1

> al Wosh! 6)
JEN(q)

where W is the semantic transformation matrix for query’s het-

erogeneous shop neighbors, and a; j is calculated as:

exp(LEakyReLU(b; : [hg -1 IWo sh]’»‘l M)
SkeNe(q) explLeakyRelU by, (b [ Wosh{ 1))

where by, ; is the attention parameter at layer ¢ for measuring
weights of heterogeneous neighbors.
Furthermore, after obtaining h

to_
%)=

N()anth()

second attention to fuse both homogeneous and heterogeneous in-
formation as followed:

we apply the

t _ pt t t t
hiv@) = Pro@™Not@) * PNeo)PNe(o) )
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exp(LeakyReLU(c, , (4! Iy, @V

P = -
N S (N Ne()} exp(LeakyReLU(c] ,[hf ! |[ht]))
)
where cg,; is the parameter of second level attention at layer ¢,
is the attention weights to differentiate two types (i.e., ho-

t
b Ni(q)
mogeneous and heterogeneous) of neighbors.

hj\/(q) is the aggregated neighborhood representation as a result

of hierarchical attention. Then we do the COMBINE operation re-
garding to hi\/(q) and hf{l. First we concatenate them and employ
a linear transformation:

h) = LeakyReLU(W} - [ |[h}, 1) )

N(q)
where (VVqt is the learnable transformation parameter. hf] is the

query node representation at layer ¢ that has fused both homoge-
neous and heterogeneous information.

On the other hand, for shop node s, the hierarchical attention
mechanism works in an identical way, except the attention param-
eters are distinct, and the semantic transformation matrix should
change from Wpgs to Wsg.

3.3 Transferring Knowledge from Product
Search

The reason why we need to transfer knowledge from product search
(TKPS) is three fold: (1) frequently user queries are ambiguous
and shop names may don’t reflect what they sell, so we don’t ag-
gregate neighbor’s texts through hierarchical attention framework
since much noise may be carried by them, (2) user behaviors of
shop search are fairly sparser while transaction history of product
search contains richer information, (3) incorporating items (sold
under a query or owned by a shop) title texts can contribute to
mitigating the semantic gap between user queries and shop names.
We adopt uniform term embedding scheme described in [9], which
represents queries, shops and items with one set of word term em-
beddings. As shown in Figure 1(d), still take a piece of query g com-
posed of n terms as example, let its terms be (wg,1, wg,2, ..., Wg,n)-

At the embedding layer, each term is converted into a low-dimensional

dense vector representation and q is expressed as (tq, 1, tg,2, ..., tg,n)-
Then we derive the text representation of query g from its term em-
beddings:

eq = f(tq,l,tq,Z»-n,tq,n) (10)
where f means the operation function applied to the terms. In our
experiments, we adopt the average function. Similarly, text repre-
sentations of shop and item are derived as e, e; respectively.

Afterwards we non-uniformly sample N item neighbors for query
q according to the weights defined in Section 2.2, denoted as Ny, (q).
We aggregate the item neighbors text as followed:

ejvm @ = AGGREGATE({e! ™1, Vi € Nim(9)}) 11)
t-1

i
e? = e;. Here instead of attentive aggregation, we design the AG-

GREGATE function as mean pooling. Owing to the fact that query

where e:™" is item text representation vector at layer ¢t — 1 and
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itself may hold vague meaning, so query-guided attention may
bring in mistaken information.

e a1 t L,
Then we combine e, and € Nn(q) to get eg:
el = LeakyReLU(W, - [el 7€, )] (12)
q q¢ 17¢ "Nm(q)

where (W(;e is the parameter matrix. Correspondingly we can ac-
quire text representation of shop s at layer ¢: eX, which fuses textual
message of shop names and item neighbor titles.

3.4 Incorporating User Features

To better characterize users and retrieve personalized search re-
sults, we augment the DHGAT model with additional user features.
In our framework, user features are represented in a multi-field
multi-hot encoding form. Each field contains multiple discrete cat-
egorical features or bag-of-words (BoW) features that are analo-
gous semantically (details of all user features can be found in Ap-
pendix A.4). For example, one input instance has three features:
[gender=male, city=beijing, interests=cook&running]. It is translated
into several high-dimensional sparse features via field-aware one-
hot encoding:

[0,1] [L,0,0,0,...,0][0,1,...,0,0, 1]
——
gender city

interests

Then the raw sparse features are fed into the embedding layer
to generate low-dimensional real-valued dense vector. The feature
embedding is used as the field embedding when the field is single-
valued. And if the field is multi-valued, we apply mean pooling to
the feature embeddings to get the field embedding. The result of
embedding layer u is a wide concatenated vector of all fields.

3.5 Two-tower Architecture

The two-tower model architecture is shown in Figure 1(b). As can
be seen, we first concatenate DHGAT output of query hg (fusing
homogeneous and heterogeneous neighbor IDs) and TKPS output
of query e4 (fusing item neighbor titles), then combine the con-
catenation vector and user feature embedding u, which is fed into
left tower for more feature fusions. The right tower accepts as in-
put concatenation result of hs and es with regard to shop. In our
experiments, two-tower are implemented as multiple layer percep-
trons (MLPs) whose hidden neurons decrease as the height rises.

3.6 Objective and Model Training

At the last layer L of two-tower, we obtain user-query representa-
tion and shop representation hﬁq and el. The probability of user
u clicking shop s after issuing a query ¢ can be predicted by:

Yugs = nn(hﬁq, eg) (13)

For implicit feedback, nn(-) can be a fully-connected layer with

a sigmoid activation function. In practice, taking into account effi-

ciency and scalability, we utilize the simplest vector inner product.

The loss function measures the discrepancy between predicted

value §j;,45s and ground-truth value y,,4s. Here we adopt the most

widely used loss function in CTR prediction task, i.e., binary cross
entropy:
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Li=- Z Yugslog(Gugs) + (1 = Yugs)log(l = Gugs) ~ (14)
(u.9.5)

Besides, using CTR (i.e. click or not click) as the sole supervi-
sory signal to train the model may not capture those information
encoded in graph topological structure effectively. We are required
to explicitly involve graph neighbor relations in the loss function.
Hence, we add a novel neighbor proximity loss to the main CTR
prediction loss, which draws closer homogeneous neighbors in the
high dimensional space and pushes farther randomly sampled neg-
ative nodes:

Nneg

Lo(hy) = ~log(o(h[h) = > log(o(~h]hy))  (15)
k~P(i)

where h;, h; and h; denotes embeddings of the current node (query
or shop), the homogeneous neighbor node in a pair, and the ran-
domly sampled negative node. Npe4 is the number of sampled neg-
ative nodes, we leave the concrete details of negative sampling in
Appendix A.1.

Combining CTR prediction cross entropy and neighbor proxim-
ity loss, we reach the following complete loss function for DHGAT:

L=L1+aLls+2]0]3 (16)

where ||®||% is the L2-regularizer on parameters and embeddings,
a and A are balancing hyper-parameters of neighbor proximity loss
and L2 regularization respectively. We use AdaGrad optimizer [8]
to minimize the loss.

4 OFFLINE EXPERIMENTS

In this section, we conduct experiments on Taobao real-world dataset
to evaluate our proposed model against up-to-date state-of-the-art
methods. We then examine hyper-parameter sensitivity and per-
form the ablation study to analyze effects of different neighbor

types.

4.1 Dataset

We evaluate our proposed DHGAT model based on a large-scale
real world dataset collected from Taobao shop search platform,
which serves over 120 million monthly active users. The dataset
covers ten consecutive days of user’s click records from the shop
search log of Taobao mobile App during November 2019. We hold
the first nine days as training set and leave the tenth day for testing,
which is refered as Normal test set. For the purpose of transferring
knowledge of product search, we collect item transaction history
of the same period also from Taobao mobile App. To verify the
generalization ability of the model, we filter out a subset that only
consists of the pairs of query and shop that don’t appear in the
training set, which we call Hard test set. And we further construct
a Long Tail test set to validate the strength of graph-based model
on the long-tail problem, where we select those queries or shops
that emerge only once in the training set. The basic statistics of
training set, three test sets as well as graph neighbor relations are
listed in Appendix A.3.
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4.2 Experimental Settings

4.2.1 Baseline Methods. We compare our model with three cate-
gories of baseline methods: (1) classical information retrieval and
semantic matching methods (NCF [13], DSSM [15], DNN), (2) two-
stage graph embedding injected searching methods (GEPS [29],
TGE-PS [4]), (3) end to end graph neural networks based meth-
ods (PinSage [28], GAT [24], HAN [26]). We also report the per-
formance of two variants of our model (DHGAT, DHGAT yp) to
test the effectiveness of the components. Hyperparameter settings
and implementation details for baselines and our method are intro-
duced in Appendix A.1 and A.2.

o NCF [13]: It is the classical neural network method for top-
N recommendation. Here we feed it with the query ID rep-
resentation and shop ID representation instead of user and
item.

DSSM [15]: This model is proposed for web search seman-
tic matching. We employ the latest BERT [5] to extract text
features and measure the similarity of query and shop.

e DNN: Content-enhanced deep learning searching model, which

concatenates ID representations with text feature embed-
dings and then feeds through into several MLP layers.
GEPS [29]: A two-stage method that utilizes DeepWalk [21]
and Node2vec [11] graph embedding techniques to enable
neural retrieval models to exploit graph structured data for
automatic feature extraction.

TGE-PS [4]: A latest inductive graph embedding approach
which uses text-driven graph embedding to generate node
embeddings from rich texts.

system with GraphSage [12] as the backbone GNN model.
We adopt the optimal implementation released in [12] and
report the results based on three neighbor aggregation tech-
niques: Mean (PinSage_M), Max-pooling (PinSage_P), LSTM
(PinSage_L).

GAT [24]: The state-of-the-art attention-based GNN method
that leverages attention mechanism to aggregate neighbor-
hood nodes. We report the results of single head and multi-
head attention (i.e., K = 8), respectively.

HAN [26]: The state-of-the-art heterogeneous network em-
bedding model, which takes the importance of nodes and
meta-paths into consideration simultaneously.

e DHGAT yp: It is a variant of DHGAT, which is non person-
alized, i.e., removes the additional user features.

DHGAT: It is our complete model.

4.2.2  Evaluation Protocol. We adopt four commonly used perfor-
mance metrics for offline evaluation: Area Under the receiver oper-
ating characteristic Curve (AUC), Group AUC (GAUC), Mean Recip-
rocal Rank (MRR), Hit Ratio at Rank K (HR@K). Note that GAUC
is different from AUC because it can measure the discrepancy be-
tween predictions and ground truths under one specific query and
combine all queries using frequency as weight. Intuitively, MRR
cares about the ranking positions of positive shops while HR@K
accounts for whether test shops are present in top-k list. In our ex-
periments, we calculate the HR@1 and HR@5 to evaluate accuracy
in the first few retrieval results.

PinSage [28]: The state-of-the-art web-scale GNN recommender
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4.3 Overall Performance

We evaluate baselines and our algorithm using three test datasets
to explore the model’s performance under different scenarios. The
overall results of different methods under five indicators are pre-
sented in Table 1, from which the following observations can be
made:

(1) In all three test datasets, the proposed DHGAT model sig-
nificantly outperforms all the compared baselines on all five eval-
uation metrics. Specifically, it offers the average relative perfor-
mance gain of 4.94%, 4.04%, 2.68%, 4.15%, 1.01% in AUC, GAUC,
MRR, HR@1, HR@5 over the best baselines respectively. In par-
ticular, we find that the improvements of DHGAT on Hard and
Long Tail are higher than Normal compared with baselines. The
results indicate that DHGAT is able to successfully aggregate in-
formation of homogeneous and heterogeneous neighborhoods and
combine item neighbors title from product search. The incorpora-
tion of graph neighbor relations helps to strengthen the represen-
tation learning of queries and shops and further enhance the pre-
diction performance, especially when the model needs to deal with
generalization and long-tail problem.

(2) Pertaining to baseline methods, we observe that DNN and
NCEF are actually better than DSSM, which demonstrates that clas-
sical semantic matching algorithm cannot handle the semantic gap
between user queries and shop names. The two-stage graph embed-
ding injected models (GEPS, TGE-PS) performs worse than end to
end GNNs based ones. This is probably because these two methods
are not directly optimized for specific CTR prediction task, thus
limiting the expression ability of generated node embeddings. As
for the GNNs based approaches, we find in most cases performance
order on different metrics is: HAN > PinSage > GAT. It is not sur-
prising since HAN is capable of exploiting heterogeneous relation-
ships while the other two approaches only model homogeneous
information. Note that Mean and LSTM aggregators achieve con-
siderable gain over Max-pooling aggregator on Hard and Long Tail
dataset. And mutli-head GAT(K=8) does perform better than single
head version.

(3) We also show the results of a non personalized variant of
DHGAT, i.e, DHGAT n p. From Table 1, we can tell that DHGAT xp
already exceeds all the baseline methods, which is attributed to its
representation power of queries and shops in both identification
and text. Moreover, we further augment DHGAT yp with addi-
tional user features to fetch personalized search results. The perfor-
mance gains of DHGAT indicate that incorporation of user features
is necessary for better characterizing the user and understanding
his intention.

(4) As mentioned above, different evaluation metrics can crys-
tallize different aspects of a model. DHGAT shows strong perfor-
mance on all five metrics, which reveals that it not only can decide
whether a shop meets user requirements, but also is able to arrange
a satisfactory ordered list for display.

4.4 In-depth Analysis

To better understand the performance of the proposed model, we

conduct a series of in-depth analysis on DHGAT yp.
Differentiating the importance of neighbor types. To ex-

amine which neighbor types play important roles in predicting
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Figure 2: Effects of different neighbor types.

user’s click decisions, we conduct ablation tests by removing dif-
ferent neighbor types. w/o homo, w/o hete, w/o item and all denote
removing query-query edges & shop-shop edges, removing query-
shop edges & shop-query edges, removing query-item edges &
shop-item edges and the complete model, respectively. We only
report the results with respect to AUC and MRR as similar perfor-
mance patterns are also observed for other metrics.

As is shown in Figure 2, removing any kind of neighbor will lead
to poor performance on both metrics, which means that all three
neighbor types contribute to enhancing representation learning.
On the other hand, DHGAT assigns highest importance to item
neighbor, proving the necessity of transferring knowledge from
product search. Homogeneous and heterogeneous neighbors are
nearly equally important on Normal and Hard dataset, neverthe-
less, homogeneous neighbors appears more critical on Long Tail
dataset. One plausible explanation is that when query or shop is
very unpopular, its possible popular homogeneous neighbors de-
termine more.

Hyperparameter sensitivity. Figure 3 and Figure 4 are illus-
tration of hyperparameter sensitivity of neighbor count and & with
respect to AUC and MRR on all three test datasets. Note that the
x-axis of Figure 4 is logarithmic.

As is depicted in the two figures, we vary the sampling neighbor
count from 3 to 10 and « from 0 to 1 while keeping other param-
eters fixed. The yellow line represents the AUC value, and the red
line indicates the MRR metric. From Figure 3, we observe that the
best performance is obtained when neighbor count is 6 or 7. Ei-
ther sampling more or less neighbors will result in performance
degradation to some extent. This is reasonable because too few
neighbors carry insufficient information while too many would in-
evitably introduce much noise. Similarly, we see from Figure 4 that
free of neighbor proximity loss (i.e., « = 0) causes the model to per-
form inferiorly while pushing too much weight on it (i.e., « = 1)
also gives rise to worse results. Hence, we set « = 0.001 in our
experiments.

5 ONLINE EXPERIMENTS

We deploy our proposed model DHGAT on the search matching
stage of shop search in Taobao. The graph neighbor relations cover
search logs of all training days, and can be updated incrementally
each day. Under the framework of A/B tests (i.e., bucket tests), one
bucket is selected for baseline and another bucket for our model.
For whole bucket, the goal is to increase user activity and maximize
the revenue. DHGAT achieves performance gains of 2.506% on
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Table 1: Performance comparison for baselines and DHGAT. The * indicates the best performance of the baselines. Best results
of all methods are highlighted in boldface. Improvement over the best baseline are shown in the last row.

Method | Normal | Hard | Long Tail
| AUC GAUC MRR HR@! HR@5 | AUC GAUC MRR HR@1 HR@5 | AUC GAUC MRR HR@! HR@5
NCF ‘ 0.8657 0.8517 0.8930 0.7621 0.9289 ‘ 0.7326 0.7277 0.8040  0.5896*  0.8831 ‘ 0.7237 0.6581 0.8563 0.8841 0.9926
DSSM ‘ 0.8076 0.7871 0.8363 0.6320 0.8938 ‘ 0.6909 0.6810 0.7524 0.4774 0.8503 ‘ 0.6968 0.6424 0.8277 0.8596 0.9927
DNN ‘ 0.8651 0.8522 0.8920 0.7590  0.9300* ‘ 0.7519* 0.7370*  0.8037 0.5847  0.8880" ‘ 0.8090*  0.7086* 0.8876* 0.9073*  0.9943*
GEPS ‘ 0.8656 0.8521 0.8932 0.7619 0.9274 ‘ 0.7304 0.7265 0.8036 0.5886 0.8826 ‘ 0.7187 0.6539 0.8477 0.8777 0.9924
TGE-PS ‘ 0.8645 0.8513 0.8918 0.7610 0.9268 ‘ 0.7282 0.7199 0.8003 0.5855 0.8830 ‘ 0.7174 0.6542 0.8467 0.8758 0.9921
PinSage M ‘ 0.8670 0.8521 0.8928 0.7618 0.9275 ‘ 0.7406 0.7267 0.8007 0.5836 0.8768 ‘ 0.7758 0.6770 0.8690 0.8938 0.9935
PinSage P ‘ 0.8647 0.8510 0.8926 0.7615 0.9265 ‘ 0.7279 0.7244 0.8029 0.5864 0.8818 ‘ 0.7348 0.6655 0.8660 0.8897 0.9936
PinSage L ‘ 0.8665 0.8525 0.8929 0.7614 0.9283 ‘ 0.7393 0.7270 0.8009 0.5840 0.8794 ‘ 0.7613 0.6723 0.8663 0.8915 0.9934
GAT ‘ 0.8295 0.7971 0.8491 0.6484 0.8992 ‘ 0.7103 0.7017 0.7734 0.5167 0.8623 ‘ 0.7214 0.6576 0.8539 0.8805 0.9924
GAT(K=38) ‘ 0.8578 0.8427 0.8859 0.7453 0.9234 ‘ 0.7237 0.7213 0.7969 0.5705 0.8792 ‘ 0.7111 0.6564 0.8489 0.8764 0.9931
HAN ‘ 0.8687"  0.8548* 0.8942* 0.7640"  0.9294 ‘ 0.7453 0.7325 0.8046"  0.5893 0.8842 ‘ 0.7425 0.6681 0.8611 0.8877 0.9924
DHGATNp ‘ 0.8778 0.8640 0.8984 0.7730 0.9346 ‘ 0.7844 0.7651 0.8245 0.6290 0.9048 ‘ 0.8732 0.7562 0.9313 0.9427  0.9961
DHGAT ‘ 0.8791 0.8654 0.8990 0.7736 0.9366 ‘ 0.7883 0.7657 0.8252 0.6320 0.9071 ‘ 0.8800 0.7581 0.9314 0.9435 0.9959
Impv. ‘ 1.20% 1.23% 0.54% 1.26% 0.71% ‘ 4.84% 3.89% 2.56% 7.20% 2.15% ‘ 8.78% 6.99% 4.93% 3.99% 0.17%
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0.8776 h0-8982 0.784 0.824 0.872 0.93
A
0.8772 0.8979
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Figure 3: Parameter sensitivity of neighbor count.
0.878 0.8985 0.782 0.826 0.868 0.93
0.928
0877 0.898 0.78 0.824 0.866
0.8975 0.778 0.822 0.864 0926
§o.876 g § g § 0.924325
0.897 0.776 0.82 0.862
) 0.922
0.8754 0.8965 0.774 0.818 0.86 [ 0.02
A AUC L A AUC h A 5 AUC
0.874 MRR 0.896 0.772 MRR 0.816 0.858 MRR 0.918
0 0.001 001 0.1 1 0 0.001 0.01 0.1 1 0 0.001 0.01 0.1 1

a

(a) Normal Dataset

o

a

(b) Hard Dataset

(c) Long Tail Dataset

Figure 4: Parameter sensitivity of a.

6 RELATED WORK

Our work in this paper is closely related to the research of e-commerce
search and graph neural networks.

number of transactions and 0.342% on SPV (shop page view) com-
pared to NCF. As for long-tail problem, we filter out those shops
that have less than 10 exposures in the training set. On these shops
DHGAT improves CTR (click through rate) by 48.1% and CVR (con-
version rate) by 72.8% on the base of NCF.
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E-commerce Search. E-commerce search is an important prob-
lem that has been widely studied both in academic and industrial
community. Early studies mainly focus on how to support search
for structured product information [6, 19]. Later, e-commerce search
studies move to exploit search logs for improving searching perfor-
mance [7, 22], especially for personalized search [1, 16]. There are
also a variety of works on applying learning to rank techniques
to e-commerce search for optimization of different retrieval met-
rics [14, 17]. Recently, research efforts have been attracted to la-
tent embedding based e-commerce search models [2, 23, 31], which
jointly learn distributional representations of users and products
for better retrieval results.

Graph Neural Networks. Graph neural networks aim to gen-
eralize neural network models to graph structured data, such as
convolution based GNN [18], attention based GNN [24] and sam-
ple and aggregation based GNN [12]. Lately researchers also de-
ployed GNNs in recommender systems or e-commerce search to
show consistent performance gains: leveraging GNNs to model
user’s interactions with items [28], to model session based tem-
poral transitions [27], to model social homophily in user prefer-
ence [10] and to model attributed multiplex heterogeneous net-
work in e-commerce [3].

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a dual heterogeneous graph attention net-
work with transferring knowledge from product search for shop
search in e-commerce. DHGAT is a deep and end to end framework
that takes advantage of graph to enhance both ID representation
and text representation. Specifically, it employs a hierarchical at-
tention framework to compose homogeneous and heterogeneous
neighbors simultaneously. Borrowing item neighbor title text from
product search helps relieve the semantic gap between user queries
and shop names. Besides, the proposed neighbor proximity loss
provides strong additional guidance for learning graph topologi-
cal structure. DHGAT further incorporates user features to better
characterize user intention and retrieve personalized shop search
results. We conduct extensive experiments in large scale offline
evaluation and online A/B test. The results demonstrate the signif-
icant superiority of DHGAT over strong baselines and the effec-
tiveness of the usage of heterogeneous graph.

For future work, we plan to investigate how to efficiently in-
troduce user historical behavior of both shop search and product
search. We also will explore more sophisticated relationships exist-
ing in user interaction heterogeneous graph and leverage them to
enhance e-commerce search performance.
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A APPENDIX

In the appendix, we firstly give the implementation details of our
proposed model and compared methods to help in reproducibility.
Then we describe more about the used dataset, including prepro-
cessing procedures, graph neighbor construction and dataset sta-
tistics. Finally, we provide details of user features which contribute
to characterizing customer intentions and retrieving personalized
results.

A.1 Implementation Details of DHGAT

Minibatch Implementation. We adopt mini-batch training tech-
nique to calculate the gradients of Eq. (16). As described in Algo-
rithm 1, for each iteration, we consider B triple sets < u, g, s >. For
each pair < ¢,s >, the homogeneous and heterogeneous neigh-
bors No(q), Ne(q), Nm(q), No(s), Ne(s), Nm(s) as well as the CTR
signal yy, 45 will be together input into the model for training. Af-
ter one epoch is finished, the batches partition will be randomly
reset to make the model more fully optimized. In each minibatch,
since numbers of neighbors are different for queries and shops, we
sample by weight a fix-sized set of neighbors of each node instead
of using its full set neighbors. Note that if some node has too few
neighbors, the sampled set may contain duplicates. In particular,
if one node doesn’t have any neighbors, we will instead use itself
to fill the sampled set. To make computation more efficient, we
leverage a negative sampling strategy during batch training when
calculating neighbor proximity loss (See below for details).

Algorithm 1: Minibatch Implementation of DHGAT

1 Initialize model parameters © randomly;

2 for iterationin 1,2, ... do

3 Pick a minibatch of B triple sets < u, g, s > and the
corresponding labels yy ¢s;

4 Sample by weight (B x 6N) neighbors Ny(q), Ne(q),
Nim(q), No(s), Ne(s), Nm(s);

5 Compute loss £1(0) according to Eq. (14);

6 Batch-in sample (B X N X 2Np¢4) negatives for B pairs
<q,s>;

7 Compute loss £2(0) according to Eq. (15);

8 Compute gradients VL(©) according to Eq. (16);

9 Update model: ©@ = © — eV L(©);

end

10

Negative Sampling. To keep the computational pattern of each
mini-batch fixed and more efficient, we make use of batch negative
sampling technique when calculating the neighbor proximity loss.
Specifically, take the query for example, suppose the batch size is
B, that is, we have B pieces of queries. And we have to sample
(Bx N) homogeneous query neighbors within this batch. For each
pair (g, q) of a piece of query q and its homogeneous neighbor ¢’ €
No(q), we sample Ny4 negatives from ((B — 1) x (N + 1)) queries,
i.e., excluding query q itself and its homogeneous neighbors. After
that we compute the mini-batch neighbor proximity loss according
to Eq. (15).

Hyperparameters. The hyperparameter settings for DHGAT are
as follows: (1) Embedding layers are randomly initialized with the
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default setting of TensorFlow xavier_initializer. For the other lay-
ers, weight parameters are initialized in the same way and bias
parameters are assigned with TensorFlow zero_initializer. (2) The
dimensions of identity embeddings and word embeddings are both
set to 256. (3) The graph attention layer of our model is set to 1 in
light of scalability and efficiency. (4) The mini-batch size is set to
512 and AdaGrad [8] is used as the optimizer, with initial learning
rate is set to 0.015. (5) The number of two-tower layers L is set to
3 and hidden neurons of each layer are formulated as 512, 256, 128
from bottom to top, respectively. (6) LeakyReLU is adopted as ac-
tivation function for graph attention layers and the negative slope
coefficient alpha is set to 0.01. (7) The L2 regularization hyperpa-
rameter ] is set to 1075,

Hardware and Software. The proposed models are trained using
Alibaba’s distributed cloud platform which is based on TensorFlow
1.4 and Python 2.7. For the sake of training efficiency, we employ
the batch neighbor sampling while training technology, which is
supported by Behemoth, a large graph computation library used
internally in Alibaba. In our experiments, the trained parameters
are distributed on 40 workers (12 CPU cores for each worker) and
updated asynchronously.

A.2 Implementation Details of Baselines
A.2.1 Classical Methods.

o NCF [13]. We re-implemented NCF according to the codes 3
provided by the corresponding author. Instead of inputting
user and item embeddings, we feed query and shop identity
embeddings into two-tower architecture and keep numbers
of neurons of each layer unchanged for fair comparison.
DSSM [15]. We adopt the latest NLP model BERT [5] as text
feature extractor in DSSM setting. Note that due to charac-
teristics of search matching, we compute inner product in-
stead of cosine similarity as in [15]. The dimension of BERT
embedding is set to 768. And parameters of BERT are pre-
trained using corpus in e-commerce.

DNN. In this model, we feed into left tower concatenation of
query identity embedding and BERT text embedding, right
tower concatenation of shop identity embedding and BERT
text embedding.

A.2.2  Two-stage Methods.

GEPS [29]. We use DeepWalk [21] for pretraining graph em-
beddings in this two-stage method, which is implemented
using Alibaba internal graph framework AliGraph. The di-
mension of node embedding is set to 512 and random walk
length is set to 3. Note that DeepWalk is trained only with
homogeneous relations, i.e., query to query and shop to shop.
TGE-PS [4]. Different from GEPS, this method leverages pre-
trained text-driven graph embeddings. We implemented it
with Bi-LSTMs over word embeddings and character em-
beddings as in original paper [4]. Dimension of node em-
beddings is same as DeepWalk in GEPS and half of it is the
number of hidden neurons of Bi-LSTMs.

A.2.3  GNNs Methods.

3https://github.com/hexiangnan/neural_collaborative_filtering
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Table 2: Basic Statistics of Dataset.

Dataset # queries | # shops | #items | # users |# interactions
Train  |2.1%107|7.7%105[1.9%107[6.2+ 107| 3.3 % 107
Normal Test 4.2+ 10 4.8 « 105 - 1.2%107| 3.4%108
Hard Test |3.5 % 10°|8.8 + 10° - 5.2+ 10°| 2.5%10°
Long Tail Test|9.7  10%{1.4 % 10° - 1.2%10% 2.5%10°

e PinSAGE [28]. We re-implemented this method on the Al-
ibaba distributed cloud platform based on the GraphSAGE [12]
codes available on GitHub *. The dimensions of node embed-
dings and two-tower structure are kept same for fair com-
parison. The search space of number of sampling neighbors
is{3,4,5,6,7,8,9, 10}. Note that this method doesn’t incor-
porate text information.

o GAT [24]. The codes ° released by the authors could not di-
rectly generalize to our dataset as they compute attention
over all neighbors. We re-implemented with attention fo-
cused only on sampled neighbors for efficiency. The sam-
pling number is searched within same space as PinSAGE.

e HAN [26]. We refered to the author’s released codes ¢ and
re-implemented this method in a distributed way. In our set-
ting, the aspects of semantic attention of queries and shops
are both 2.

A.3 Datasets

A.3.1 Preprocessing.

As is mentioned before, when constucting homogeneous neigh-
bors of queries, we need the session segment data. User behav-
ior sequences are segmented into sessions based on time interval
to prevent user intention drift. In our experiments, the time in-
terval is set to 15 minutes. The other neighbor relations are con-
structed from shop search and product transaction logs collected
from Taobao mobile App. We sum neighbor relation (i.e., graph
edge) counts over all 9 training days to build the complete large
graph. Shop IDs and item IDs are designated by Taobao system uni-
versally while query IDs are derived through hashing. For words
segmentation of query texts, shop names and item titles, we adopt
the Alibaba internal tool AliWS.

A.3.2  Statistics.

We report basic statistics of dataset and graph relations as in Ta-
ble 2 and Table 3. Table 2 shows numbers of queries, shops, items,
users and interactions in train set and test set (i.e., Normal, Hard
and Long Tail). Note that items were not involved in test set since
we cannot make use of transaction records dealed at test day. Ta-
ble 3 shows numbers of neighbor relationships used during train-

ing. Recall that we assign weights to edges based on the co-occurrence

times of nodes, in Table 3 we give numbers of weighted edges and
non-weighted edges respectively.

“https://github.com/williamleif/GraphSAGE
Shttps://github.com/PetarV-/GAT
Shttps://github.com/Jhy1993/HAN
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Table 3: Statistics of Graph Relations.

Relation # weighted edges | # edges
query2query 7.4 %107 1.6 %1010
query2shop 9.9 %107 3.8+ 108
query2item 8.4 %107 2.1+ 108

shop2shop 9.4 % 108 2.9 %109
shop2query 9.9 % 107 3.8 % 108
shop2item 1.9 %107 2.1%108

A.4 Details of User Features

We incorporate three groups of additional user features, which are
described as follows:

e User profile information. This group primarily consists
of user demographic features, which can help better under-
stand user intentions and characterize user preferences in a
fine-grained degree. Concretely, these features are gender,
age, city, phone brand, etc. Some features (e.g., gender, city)
are categorical features that could be vectorized directly via
embedding look-up. And other features (e.g., age) are nu-
merical features which will be discretized according to some
thresholds and then embedded.

e User consumption level. This group of features mainly de-
picts the purchasing power and consumption habits of users,
with which we can infer user’s tastes and retrieve search re-
sults with high satisfaction. These features include vip type,
vip score, phone price, city house price, etc. Vip level has 7
discrete feature states used in Taobao internally. Other nu-
merical features (e.g., city house price) are collected or pre-
dicted from public markets.

e User activity level. The features of this group describe Taobao
users activity at different granularities. For example, user’s
daily browsing time at Taobao mobile app, user’s weekly lo-
gin times, user’s monthly pay amount, user’s yearly luxury
deals, etc. Activity level features could be utilized to cap-
ture user biases and special interests. Most of these features
are continuous and need to be discretized with regard to se-
lected threshold values.
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